Enhanced Adsorption of Methylene Blue in Wastewater Using Natural Zeolite Impregnated with Graphene Oxide
Gabriela Tubon-Usca, Cyntia Centeno, Shirley Pomasqui, Amerigo Beneduci, Fabian Arias AriasThe use of graphene oxide (GO) in combination with mesoporous materials has gained interest in the development of adsorbents. In this study, GO was impregnated into zeolite at three concentrations (ZGO2.5, ZGO5, and ZGO10) through a simple thermal process to enhance the adsorption of methylene blue (MB). Characterization of the resulting materials was performed using spectroscopic techniques such as UV-Vis and FT-IR spectroscopy, SEM, and EDS, confirming the presence of GO on zeolite. Batch experiments were conducted to evaluate their performance, analyzing contact time, pH effect, and adsorption kinetics. Pseudo-first-order, pseudo-second-order, and Elovich kinetic models were applied, and the adsorption mechanism was studied using Langmuir, Freundlich, Temkin II, and Dubinin–Radushkevich (D-R) isotherms at different temperatures. Optimal adsorption was achieved at 273 K, 100 mg L−1 of MB, adsorbent mass of 100 mg, 250 rpm, and pH 5–9, with 90% removal efficiency after 70 min. The pseudo-second-order, Freundlich, and D-R models best described the process (R2 > 0.98), suggesting a mixed physisorption–chemisorption mechanism. The maximum adsorption capacity from the D-R isotherm reached 119 mg g−1 at 333 K. Thermodynamic studies showed that adsorption was a spontaneous and endothermic process. These findings highlight the potential of GO-impregnated zeolite as an effective adsorbent for MB.