DOI: 10.3390/info16070608 ISSN: 2078-2489

Efficient Hotspot Detection in Solar Panels via Computer Vision and Machine Learning

Nayomi Fernando, Lasantha Seneviratne, Nisal Weerasinghe, Namal Rathnayake, Yukinobu Hoshino

Solar power generation is rapidly emerging within renewable energy due to its cost-effectiveness and ease of deployment. However, improper inspection and maintenance lead to significant damage from unnoticed solar hotspots. Even with inspections, factors like shadows, dust, and shading cause localized heat, mimicking hotspot behavior. This study emphasizes interpretability and efficiency, identifying key predictive features through feature-level and What-if Analysis. It evaluates model training and inference times to assess effectiveness in resource-limited environments, aiming to balance accuracy, generalization, and efficiency. Using Unmanned Aerial Vehicle (UAV)-acquired thermal images from five datasets, the study compares five Machine Learning (ML) models and five Deep Learning (DL) models. Explainable AI (XAI) techniques guide the analysis, with a particular focus on MPEG (Moving Picture Experts Group)-7 features for hotspot discrimination, supported by statistical validation. Medium Gaussian SVM achieved the best trade-off, with 99.3% accuracy and 18 s inference time. Feature analysis revealed blue chrominance as a strong early indicator of hotspot detection. Statistical validation across datasets confirmed the discriminative strength of MPEG-7 features. This study revisits the assumption that DL models are inherently superior, presenting an interpretable alternative for hotspot detection; highlighting the potential impact of domain mismatch. Model-level insight shows that both absolute and relative temperature variations are important in solar panel inspections. The relative decrease in “blueness” provides a crucial early indication of faults, especially in low-contrast thermal images where distinguishing normal warm areas from actual hotspot is difficult. Feature-level insight highlights how subtle changes in color composition, particularly reductions in blue components, serve as early indicators of developing anomalies.