Effects of Monensin, Calcareous Algae, and Essential Oils on Performance, Carcass Traits, and Methane Emissions Across Different Breeds of Feedlot-Finished Beef Cattle
Pedro Guerreiro, Diogo F. A. Costa, Arnaldo C. Limede, Guilhermo F. S. Congio, Murillo A. P. Meschiatti, Priscila A. Bernardes, Flavio A. Portela SantosWith the growing use of crossbred cattle in Brazilian feedlots and increasing pressure to reduce antibiotic use as growth promoters, this study examines the impact of three feed additives—monensin (MON), monensin with Lithothamnium calcareum (LCM), and a blend of essential oils (BEO)—on the performance of Nellore (NEL) and crossbred (CROSS) cattle. A total of 90 Nellore and 90 crossbred bulls were assigned to a completely randomized block design with a 2 × 3 factorial design for 112 days, and all received the same diet with varying additives. Their methane (CH4) emissions were estimated. All data were analyzed using the emmeans package of R software (version 4.4.1). Crossbred cattle outperformed Nellore in average daily gain (ADG), hot carcass weight (HCW), and dry matter intake (DMI), though feed efficiency remained unaffected. Across additives, no significant differences were observed in ADG, HCW, or dressing percentage. However, LCM had a lower DMI than the BEO, while MON showed better feed efficiency than the BEO. A breed-by-additive interaction trend was noted for DMI as a percentage of body weight (DMI%BW), with Nellore bulls on LCM diets showing the lowest DMI%BW. Crossbreeds had greater net energy (NE) requirements for maintenance (NEm) and gain (NEg), and MON-fed animals had greater NEm and NEg than the BEO. Crossbred bulls had greater daily methane (CH4) emissions than Nellore bulls. Animals on the BEO had greater daily CH4 emissions and greater g CH4/kg metabolic BW than LCM bulls. In conclusion, the addition of Lithothamnium calcareum to monensin did not enhance performance compared to monensin alone. Monensin outperformed the BEO in feed efficiency and nutrient utilization.