DOI: 10.1126/sciadv.adu4227 ISSN: 2375-2548

Effects of incoming polygonal fault systems on subduction zone and slow slip behavior

Maomao Wang, Philip M. Barnes, Demian Saffer, Gregory F. Moore, Haoran Ma, Ming Wang, Jinbao Su

The physical properties of subduction inputs profoundly influence megathrust slip behavior. Seismic data reveal extensive polygonal fault systems (PFSs) in the input sequences of the Hikurangi Margin and Nankai Trough. The mechanical and hydrological effects of these incoming PFSs on subduction zones are potentially substantial. Here, we investigate their effects following transport into the accretionary wedge by integrating discrete-element modeling with three-dimensional seismic interpretation. We find that the typical dips of the incoming PFSs overlap with modeled dips prone to reactivation and confirm that subducting PFSs can be reactivated and gradually evolve into major thrust faults. Comparisons with electromagnetic data indicate that PFSs may provide conduits for fluid leakage along the plate interface, coincide with disrupted strata and decreased shear stress, and enhance geometric and stress heterogeneity along the megathrust. These suggest that PFSs may play a previously unrecognized role in contributing to shallow slow earthquake phenomena in subduction zones.

More from our Archive