Effect of Depth of Cut and Number of Layers on the Surface Roughness and Surface Homogeneity After Milling of Al/CFRP Stacks
Elżbieta Doluk, Anna Rudawska, Stanisław LegutkoA multilayer structure is a type of construction consisting of outer layers and a core, which is mainly characterized by high strength and specific stiffness, as well as the ability to dampen vibration and sound. This structure combines the high strength of traditional materials (mainly metals) and composites. Currently, sandwich structures in any configurations (types of core) are one of the main directions of technology development and research. This paper evaluates the surface quality of II- and III-layer sandwich structures that are a combination of aluminum alloy and CFRP (Carbon Fiber-Reinforced Polymer) after the machining. The effect of depth of cut (ae) on the surface roughness of the II- and III-layer sandwich structures after the milling process was investigated. The surface homogeneity was also investigated. It was expressed by the IRa and IRz surface homogeneity indices formed from the Ra and Rz surface roughness parameters measured separately for each layer of the materials forming the sandwich structure. It was noted that the lowest surface roughness (Ra = 0.03 µm and Rz = 0.20 µm) was obtained after the milling of the II-layer sandwich structure using ae = 0.5 mm, while the highest was obtained for the III-layer structure and ae = 1.0 mm (Ra = 1.73 µm) and ae = 0.5 mm (Rz = 10.98 µm). The most homogeneous surfaces were observed after machining of the II-layer structure and using the depth of cut ae = 2.0 mm (IRa = 0.28 and IRz = 0.06), while the least homogeneous surfaces were obtained after milling of the III-layer structure and the depths of cut ae = 0.5 mm (IRa = 0.64) and ae = 2.0 mm (IRz = 0.78). The obtained results may be relevant to surface engineering and combining hybrid sandwich structures with other materials.