DOI: 10.3390/ijms26136506 ISSN: 1422-0067

Dual Inhibition of SRC Family Kinases and Sorafenib Enhances Anti-Tumor Activity in Hepatocellular Carcinoma Cells

Loraine Kay Cabral, Cyrollah Disoma, Paola Tarchi, Korri Elvanita El-Khobar, Agustiningsih Agustiningsih, Francesco Dituri, Claudio Tiribelli, Caecilia Sukowati

Hepatocellular carcinoma (HCC) remains a major clinical challenge due to its high recurrence rate and limited response to monotherapies, such as sorafenib—the standard first-line therapy for advanced HCC. This is partly attributed to its cellular heterogeneity. Increasing evidence implies SRC family kinase (SFK) activation in HCC progression, highlighting the potential of SRC-targeted therapies. In this study, we observed that SRC and YES1 were significantly upregulated in clinical HCC specimens compared to its adjacent non-tumoral tissues (p < 0.001), suggesting relevance as therapeutic targets. High SRC expression was noticed in patients with poor prognosis, as confirmed in TCGA cohort. To evaluate the efficacy of dual targeting, we assessed the combination between SRC inhibitors, saracatinib and dasatinib, with sorafenib in six hepatic cell models, representing both S1 and S2 subtypes. Cytotoxicity assays demonstrated reduced cell viability with the combination therapies compared to either monotherapy, irrespective of the HCC subtype. Wound healing and Transwell migration assays revealed inhibition of cell migration and invasion following combination treatment, underscoring its potential to suppress metastatic behavior. RT-qPCR analysis further confirmed downregulation of the expression of MMP2 and MMP9, genes associated with HCC cell invasion. Additionally, combined therapies decreased VEGFA and HIF1A expression compared to sorafenib alone, suggesting a potential to counteract the adaptive resistance mechanisms of cells to sorafenib. In summary, the combination of SFK inhibitors with sorafenib significantly enhances anti-tumor activity, offering a promising strategy to address HCC cellular heterogeneity and improve treatment efficacy.

More from our Archive