Does retensioning of adjustable-loop cortical suspension devices improve performance: A systematic review and meta-analysis
Seth Theodore Campbell, Joseph Liu, Anirudh K. Gowd, Nirav Amin, Matthew Sardelli, Martin Morrison- General Medicine
Objectives:
To date, there is conflicting evidence when comparing fixed-loop cortical suspension devices (FLDs) to adjustable-loop devices (ALDs). Some studies indicate that ALDs are inferior to FLD in regard to displacement and failure load while others show that they are biomechanically similar. The purpose of this study is to use a meta-analysis of biomechanical data to compare FLDs to ALDs with and without retensioning. It is hypothesized that retensioning the ALD will allow these devices to be biomechanically equivalent to the FLD in total unloaded displacement and failure load.
Materials and Methods:
This study sought to identify all biomechanical studies that compared fixed loops to ALD. A meta-analysis was performed to find the standardized mean difference with retensioning as a covariate.
Results:
The analysis of isolated tests showed that retensioning reduced the cyclic ALD displacement in comparison to non-retensioned ALD; however, both the ALD with and without retensioning had significantly higher cyclical displacement and significantly lower failure load compared to the FLD. In the meta-analysis of the animal model data, there was no significant difference between the ALD with retensioning and the FLD.
Conclusion:
This analysis suggests that retensioning reduces displacement of an ALD, with displacements measured in animal bone testing showing no significant difference as compared to FLD. However, in the device-only model, the ALD with retensioning and the ALD without retensioning had significantly higher cyclical displacement and significantly lower load to failure compared to the FLD. These data suggest that retensioning may be beneficial. However, there is significant heterogeneity in the pooled studies which limit the strength of this conclusion.