Design of a Hybrid 3D-Printed Composite Material Based on Non-Woven Needle-Punched Fabrics with Radio-Absorbing Properties
Victor Nazarov, Fedor Doronin, Alexander Dedov, Andrey Evdokimov, Georgy Rytikov, Mikhail Savel’evThe paper proposes a manufacturing technology for the non-woven/3D-printed (N3DP) hybrid material (HM) with improved radio-absorbing properties. We have fabricated the needle-punched non-woven felt and impregnated it with the carbon fibers containing UV-curable photopolymer resin. The functional 3D-printed layer was attached to the highly porous, deformable polymer substrate by the fused deposition modeling (FDM) technique. The preliminary bulk modification of the filament was realized with the IR- and UV-pigment microcapsules filling. The combination of additive prototyping and non-woven needle-punched fabrics surface modification (by the electrically conductive elements 2D-periodic system applying) expands the frequency range of the electromagnetic radiation effective absorption. It provides the possibility of a reversible change in the color characteristics of the hybrid material surface under the influence of the UV and IR radiation.