Design and Performance Evaluation of a Self-Propelled Mugwort Harvester for Hilly and Mountainous Regions
Yi Li, Yongsheng He, Kai Zhang, Siqi Wang, Xinyu Hu, Junnan ChenThere are extensive areas of mugwort cultivation in China, making efficient harvesting crucial for the industry’s economic performance. However, the lack of specialized harvesting machinery for hilly and mountainous regions leads to reliance on manual operations, characterized by high labor intensity and low efficiency. To address these issues, a self-propelled mugwort harvester is designed based on mugwort planting patterns and the physical characteristics of mugwort during the harvesting period. Key structural components, such as drum dimensions, tooth shapes, and tine arrangements, are developed, and a defoliation force model is established to identify factors influencing the net rate of mugwort leaf harvesting, impurity rate, and mugwort leaf usability. The harvester employs a fully hydraulic drive system, for which the hydraulic system is designed and components are selected. A quadratic regression orthogonal rotary test determines the optimal parameters: a forward speed of 0.8 m/s, drum speed of 200 r/min, and cutting table height of 50 mm. Field tests show that the harvester achieves a net rate of mugwort leaf harvesting of 93.78%, an impurity rate of 13.96%, a mugwort leaf usability of 86.23%, and an operational efficiency of 0.155 hm2/h, while maintaining stable operation under field conditions. Beyond these performance metrics, the harvester reduces dependency on manual labor, lowers operational costs, and increases profitability for farmers. By improving the sustainability and mechanization of mugwort harvesting, this study provides an efficient solution for mugwort cultivation in hilly and mountainous regions and contributes to the sustainable development of the industry.