Claudia F. Morsink, Alida J. Dam-Vervloet, Marleen E. Krommendijk, Michael Kaya, Carlos Cuartas-Vélez, Tom Knop, Kalloor Joseph Francis, Nienke Bosschaart

Design and characterization of color printed polyurethane films as biomedical phantom layers

  • Atomic and Molecular Physics, and Optics
  • Biotechnology

We propose a new, user-friendly and accessible approach for fabricating thin phantoms with controllable absorption properties in magnitude, spectral shape, and spatial distribution. We utilize a standard office laser color printer to print on polyurethane thin films (40 – 60 μm), commonly available as medical film dressings and ultrasound probe covers. We demonstrate that the optical attenuation and absorption of the printed films correlate linearly with the printer input settings (opacity), which facilitates a systematic phantom design. The optical and acoustic properties of these polyurethane films are similar to biological tissue. We argue that these thin phantoms are applicable to a wide range of biomedical applications. Here, we introduce two potential applications: (1) homogeneous epidermal melanin phantoms and (2) spatially resolved absorbers for photoacoustic imaging. We characterize the thin phantoms in terms of optical properties, thickness, microscopic structure, and reproducibility of the printing process.

Need a simple solution for managing your BibTeX entries? Explore CiteDrive!

  • Web-based, modern reference management
  • Collaborate and share with fellow researchers
  • Integration with Overleaf
  • Comprehensive BibTeX/BibLaTeX support
  • Save articles and websites directly from your browser
  • Search for new articles from a database of tens of millions of references
Try out CiteDrive

More from our Archive