DOI: 10.3390/jimaging9090179 ISSN:

Data-Weighted Multivariate Generalized Gaussian Mixture Model: Application to Point Cloud Robust Registration

Bingwei Ge, Fatma Najar, Nizar Bouguila
  • Electrical and Electronic Engineering
  • Computer Graphics and Computer-Aided Design
  • Computer Vision and Pattern Recognition
  • Radiology, Nuclear Medicine and imaging

In this paper, a weighted multivariate generalized Gaussian mixture model combined with stochastic optimization is proposed for point cloud registration. The mixture model parameters of the target scene and the scene to be registered are updated iteratively by the fixed point method under the framework of the EM algorithm, and the number of components is determined based on the minimum message length criterion (MML). The KL divergence between these two mixture models is utilized as the loss function for stochastic optimization to find the optimal parameters of the transformation model. The self-built point clouds are used to evaluate the performance of the proposed algorithm on rigid registration. Experiments demonstrate that the algorithm dramatically reduces the impact of noise and outliers and effectively extracts the key features of the data-intensive regions.

More from our Archive