Gaurav Verma, Siddhisanket Raskar, Murali Emani, Barbara Chapman

Cross-Feature Transfer Learning for Efficient Tensor Program Generation

  • Fluid Flow and Transfer Processes
  • Computer Science Applications
  • Process Chemistry and Technology
  • General Engineering
  • Instrumentation
  • General Materials Science

Tuning tensor program generation involves navigating a vast search space to find optimal program transformations and measurements for a program on the target hardware. The complexity of this process is further amplified by the exponential combinations of transformations, especially in heterogeneous environments. This research addresses these challenges by introducing a novel approach that learns the joint neural network and hardware features space, facilitating knowledge transfer to new, unseen target hardware. A comprehensive analysis is conducted on the existing state-of-the-art dataset, TenSet, including a thorough examination of test split strategies and the proposal of methodologies for dataset pruning. Leveraging an attention-inspired technique, we tailor the tuning of tensor programs to embed both neural network and hardware-specific features. Notably, our approach substantially reduces the dataset size by up to 53% compared to the baseline without compromising Pairwise Comparison Accuracy (PCA). Furthermore, our proposed methodology demonstrates competitive or improved mean inference times with only 25–40% of the baseline tuning time across various networks and target hardware. The attention-based tuner can effectively utilize schedules learned from previous hardware program measurements to optimize tensor program tuning on previously unseen hardware, achieving a top-5 accuracy exceeding 90%. This research introduces a significant advancement in autotuning tensor program generation, addressing the complexities associated with heterogeneous environments and showcasing promising results regarding efficiency and accuracy.

Need a simple solution for managing your BibTeX entries? Explore CiteDrive!

  • Web-based, modern reference management
  • Collaborate and share with fellow researchers
  • Integration with Overleaf
  • Comprehensive BibTeX/BibLaTeX support
  • Save articles and websites directly from your browser
  • Search for new articles from a database of tens of millions of references
Try out CiteDrive

More from our Archive