Jia Hao Soh, Thomas L. C. Jansen, Elisa Palacino-González

Controlling the nonadiabatic dynamics of the charge-transfer process with chirped pulses: Insights from a double-pump time-resolved fluorescence spectroscopy scheme

  • Physical and Theoretical Chemistry
  • General Physics and Astronomy

The manipulation of the ultrafast quantum dynamics of a molecular system can be achieved through the application of tailored light fields. This has been done in many ways in the past. In our present investigation, we show that it is possible to exert specific control over the nonadiabatic dynamics of a generic model system describing ultrafast charge-transfer within a condensed dissipative environment by using frequency-chirped pulses. By adjusting the external photoexcitation conditions, such as the chirp parameter, we show that the final population of the excitonic and charge-transfer states can be significantly altered, thereby influencing the elementary steps controlling the transfer process. In addition, we introduce an excitation scheme based on double-pump time-resolved fluorescence spectroscopy using chirped-pulse excitations. Here, our findings reveal that chirped excitations enhance the vibrational system dynamics as evidenced by the simulated spectra, where a substantial signal intensity dependence on the chirp is observed. Our simulations show that chirped pulses are a promising tool for steering the dynamics of the charge-transfer process toward a desired target outcome.

Need a simple solution for managing your BibTeX entries? Explore CiteDrive!

  • Web-based, modern reference management
  • Collaborate and share with fellow researchers
  • Integration with Overleaf
  • Comprehensive BibTeX/BibLaTeX support
  • Save articles and websites directly from your browser
  • Search for new articles from a database of tens of millions of references
Try out CiteDrive

More from our Archive