Control of Silver Micro-Flakes Sintering and Connection Properties of Epoxy-Based Conductive Adhesives by the Effectiveness of Binder Chemistry
Takanori Fukushima, Masahiro InoueBonding materials with high thermal and electrical conductivity and reliable resistance to thermal stress are required. The authors have been conducting fundamental research on sintering-type bonding, in which metal micro-fillers are low-temperature sintered in the resin-bonded type electrically conductive adhesives (ECAs), as a new bonding technology, with the aim of easing thermal stress through the resin binder. This study investigated the influence of the kind of additive diluent in epoxy-based ECAs containing silver (Ag) micro-flakes on the microstructure development in the adhesives and the connection properties to metal electrodes. As a result, the sintering of Ag micro-flakes was observed to proceed in the adhesive once cured at 150 °C and by post-annealing at 250 °C. Furthermore, the sintering behavior varied greatly depending on the kind and composition of the binder additive diluent, with corresponding changes in electrical conductivity and connection characteristics with metal electrodes. Additionally, electrode surface conditions affected the connection performance. These findings are valuable for designing sintering-type bonding using resin-bonded ECAs, optimizing interfacial interactions between binder chemicals and metals.