Rui Zhou, Xianghong Xu

Contact Force Surrogate Model and Its Application in Pantograph–Catenary Parameter Optimization

  • Fluid Flow and Transfer Processes
  • Computer Science Applications
  • Process Chemistry and Technology
  • General Engineering
  • Instrumentation
  • General Materials Science

The significant increase in the speed of high-speed trains has made the optimization of pantograph–catenary parameters aimed at improving current collection quality become one of the key issues that urgently need to be addressed. In this paper, a method and solutions are proposed for optimizing multiple pantograph–catenary parameters, taking into account the speed levels and engineering feasibility, for pantograph–catenary systems that contain dozens of parameters and exhibit strong nonlinear coupling characteristics. Firstly, a surrogate model capable of accurately predicting the standard deviation of contact force based on speed and 14 pantograph–catenary parameters was constructed by using the pantograph–catenary finite element model and feedforward neural network. Secondly, sensitivity analysis and rating of the pantograph–catenary parameters under different speeds were conducted using the variance-based method and the surrogate model. Finally, by combining the sensitivity analysis results and the Selective Crow Search Algorithm, joint optimization of 10 combinations of the pantograph–catenary parameters across the entire speed range was performed, providing efficient pantograph–catenary parameter optimization solutions for various engineering conditions.

Need a simple solution for managing your BibTeX entries? Explore CiteDrive!

  • Web-based, modern reference management
  • Collaborate and share with fellow researchers
  • Integration with Overleaf
  • Comprehensive BibTeX/BibLaTeX support
  • Save articles and websites directly from your browser
  • Search for new articles from a database of tens of millions of references
Try out CiteDrive

More from our Archive