Conformal field theory approach to parton fractional quantum Hall trial wave functions
Greg J. Henderson, G. J. Sreejith, Steven H. SimonWe show that all lowest Landau-level projected and unprojected chiral parton type fractional quantum Hall ground and edge-state trial wave functions, which take the form of products of integer quantum Hall wave functions, can be expressed as conformal field theory (CFT) correlation functions, where we can associate a chiral algebra to each parton state such that the CFT defined by the algebra is the “smallest” such CFT that can generate the corresponding ground and edge-state trial wave functions (assuming that the corresponding chiral algebra does indeed define a physically “sensible” CFT). A field-theoretic generalization of Laughlin's plasma analogy, known as generalized screening, is formulated for these states. If this holds, along with an additional assumption, we argue that the inner products of edge-state trial wave functions, for parton states where the “densest” trial wave function is unique, can be expressed as matrix elements of an exponentiated local action operator of the CFT, generalizing the result of Dubail [], which implies the equality between edge-state and entanglement level counting to state counting in the corresponding CFT. We numerically test this result in the case of the unprojected