Comparing Chlorophyll Fluorescence and Hyperspectral Indices in Drought-Stressed Young Plants in a Maize Diversity Panel
Lovro Vukadinović, Vlatko Galić, Andrija Brkić, Antun Jambrović, Domagoj ŠimićProgressing climate change necessitates the development of drought-tolerant crops, and understanding the temporal dynamics of genotype x environment interactions (GxE) is crucial. This study aimed to test established phenotyping methods (chlorophyll a fluorescence (ChlF) and hyperspectral (HS) imaging) to investigate the variability in 165 inbred maize lines’ responses to progressive drought stress. The inbred maize lines were grown under controlled conditions and were challenged with water withholding. Fifteen ChlF and HS indices were measured at three consecutive time points (M1, M2, and M3). Mixed models were employed to estimate the GxT interaction effects via Best Linear Unbiased Predictors (BLUPs) for each variable. A Principal Component Analysis (PCA) performed on the GxT BLUPs from each time point revealed a highly dynamic interaction structure. While the primary axis of GxT variation (PC1) was consistently associated with HI, which is related to plant vigor, across all measurement times, its importance intensified under severe stress (M3). The secondary axis (PC2) shifted markedly over time: after initial variations at M1, it was dominated by GxT effects in specific ChlF parameters related to photosynthetic regulation under moderate stress (M2), before shifting again under severe stress (M3) to reflect the GxT effects on indices potentially related to pigment degradation and other stress indicators.