Erkut Memiş, Hilal Akarkamçı (Kaya), Mustafa Yeniad, Javad Rahebi, Jose Manuel Lopez-Guede

Comparative Study for Sentiment Analysis of Financial Tweets with Deep Learning Methods

  • Fluid Flow and Transfer Processes
  • Computer Science Applications
  • Process Chemistry and Technology
  • General Engineering
  • Instrumentation
  • General Materials Science

Nowadays, Twitter is one of the most popular social networking services. People post messages called “tweets”, which may contain photos, videos, links and text. With the vast amount of interaction on Twitter, due to its popularity, analyzing Twitter data is of increasing importance. Tweets related to finance can be important indicators for decision makers if analyzed and interpreted in relation to stock market. Financial tweets containing keywords from the BIST100 index were collected and the tweets were tagged as “POSITIVE”, “NEGATIVE” and “NEUTRAL”. Binary and multi-class datasets were created. Word embedding and pre-trained word embedding were used for tweet representation. As classifiers, Neural Network, Convolutional Neural Network (CNN), Long Short-Term Memory (LSTM), Gated Recurrent Units (GRU) and GRU-CNN models were used in this study. The best results for binary and multi-class datasets were observed with pre-trained word embedding with the CNN model (83.02%, 72.73%). When word embedding was employed, the Neural Network model had the best results on the multi-class dataset (63.85%) and GRU-CNN had the best results on the binary dataset (80.56%).

Need a simple solution for managing your BibTeX entries? Explore CiteDrive!

  • Web-based, modern reference management
  • Collaborate and share with fellow researchers
  • Integration with Overleaf
  • Comprehensive BibTeX/BibLaTeX support
  • Save articles and websites directly from your browser
  • Search for new articles from a database of tens of millions of references
Try out CiteDrive

More from our Archive