Climate Change Influences via Species Distribution Shifts and Century‐Scale Warming in an End‐To‐End California Current Ecosystem Model
Owen R. Liu, Isaac C. Kaplan, Pierre‐Yves Hernvann, Elizabeth A. Fulton, Melissa A. Haltuch, Chris J. Harvey, Kristin N. Marshall, Barbara Muhling, Karma Norman, Mercedes Pozo Buil, Alberto Rovellini, Jameal F. SamhouriABSTRACT
Climate change can impact marine ecosystems through many biological and ecological processes. Ecosystem models are one tool that can be used to simulate how the complex impacts of climate change may manifest in a warming world. In this study, we used an end‐to‐end Atlantis ecosystem model to compare and contrast the effects of climate‐driven species redistribution and projected temperature from three separate climate models on species of key commercial importance in the California Current Ecosystem. Adopting a scenario analysis approach, we used Atlantis to measure differences in the biomass, abundance, and weight at age of pelagic and demersal species among six simulations for the years 2013–2100 and tracked the implications of those changes for spatially defined California Current fishing fleets. The simulations varied in their use of forced climate‐driven species distribution shifts, time‐varying projections of ocean warming, or both. In general, the abundance and biomass of coastal pelagic species like Pacific sardine (