Classification of Tree Species in Poland Using CNNs Tabular-to-Pseudo Image Approach Based on Sentinel-2 Annual Seasonality Data
Łukasz Mikołajczyk, Paweł Hawryło, Paweł Netzel, Jakub Talaga, Nikodem Zdunek, Jarosław SochaTree species classification provides invaluable information across various sectors, from forest management to conservation. This task is most commonly performed using remote sensing; however, this method is prone to classification errors, which modern computational approaches aim to minimize. Convolutional neural networks (CNNs) used to model tabular data have recently gained popularity as a highly efficient classification tool. In the present study, a variation of this method is used to classify satellite multispectral data from the Sentinel-2 mission to distinguish between 18 common Polish tree species. The novel model is trained and tested on data from species-homogeneous forest stands. The data form a multi-seasonal time series and cover five years of observations. The model achieved an overall accuracy of 80% and Cohen Kappa of 0.80 of the raw output and increased to 93% with post-processing procedures. Considering the large number of species classified, this is a promising and encouraging result. The presented results indicate the importance of early vegetation season reflectance data in model training. The spectral bands representing the infrared, red-edge and green wavelengths had the greatest impact on the model.