Sheyla Arango, Jovana Kojić, Lidija Perović, Branislava Đermanović, Nadežda Stojanov, Vladimir Sikora, Zorica Tomičić, Emiliano Raffrenato, Lucia Bailoni

Chemical Characterization of 29 Industrial Hempseed (Cannabis sativa L.) Varieties

  • Plant Science
  • Health Professions (miscellaneous)
  • Health (social science)
  • Microbiology
  • Food Science

Hemp is considered one of the potential novel crops for human and animal nutrition. This study aimed to determine the complete chemical composition of 29 different varieties of whole hempseeds. Fatty acid composition, amino acid profile, mineral composition, and cannabinoids content were also evaluated. All hempseed varieties were milled to obtain whole hempseed flour. Differences between hempseed varieties were significant (p < 0.05) for all measured parameters. Proximate composition results showed that crude protein and fat contents varied from 21.6–28.9% and 21.1–35.7%, respectively. Fatty acid profiles revealed that the three major fatty acids were linoleic acid (52.79–57.13%) followed by α-linolenic acid (12.62–20.24%), and oleic acid (11.08–17.81%). All essential amino acids were detected in all varieties, with arginine (12.66–17.56 mg/100 g protein) present in abundance, whereas lysine was limiting. Substantial differences were found in the mineral content, and potassium (509.96–1182.65 mg/100 g) and iron (5.06–32.37 mg/100 mg) were the main macro- and microminerals found. All cannabinoids were found in small traces and tetrahydrocannabidiol (THC) was only detected in five varieties. To conclude, the nutritional composition of hempseeds with hull makes them suitable to be added into the diets of humans or animals as a highly beneficial novel ingredient.

Need a simple solution for managing your BibTeX entries? Explore CiteDrive!

  • Web-based, modern reference management
  • Collaborate and share with fellow researchers
  • Integration with Overleaf
  • Comprehensive BibTeX/BibLaTeX support
  • Save articles and websites directly from your browser
  • Search for new articles from a database of tens of millions of references
Try out CiteDrive

More from our Archive