ChatCVD: A Retrieval-Augmented Chatbot for Personalized Cardiovascular Risk Assessment with a Comparison of Medical-Specific and General-Purpose LLMs
Wafa Lakhdhar, Maryam Arabi, Ahmed Ibrahim, Abdulrahman Arabi, Ahmed SeragLarge language models (LLMs) are increasingly being applied to clinical tasks, but it remains unclear whether medical-specific models consistently outperform smaller, generalpurpose ones. This study investigates that assumption in the context of cardiovascular disease (CVD) risk assessment. We fine-tuned eight LLMs—both general-purpose and medical-specific—using textualized data from the Behavioral Risk Factor Surveillance System (BRFSS) to classify individuals as “High Risk” or “Low Risk”. To provide actionable insights, we integrated a Retrieval-Augmented Generation (RAG) framework for personalized recommendation generation and deployed the system within an interactive chatbot interface. Notably, Gemma2, a compact 2B-parameter general-purpose model, achieved a high recall (0.907) and F1-score (0.770), performing on par with larger or medical-specialized models such as Med42 and BioBERT. These findings challenge the common assumption that larger or specialized models always yield superior results, and highlight the potential of lightweight, efficiently fine-tuned LLMs for clinical decision support—especially in resource-constrained settings. Overall, our results demonstrate that general-purpose models, when fine-tuned appropriately, can offer interpretable, high-performing, and accessible solutions for CVD risk assessment and personalized healthcare delivery.