Dirk Müller, Donald B. Dingwell

Calcium–magnesium–aluminum‐silicate melt viscosities influenced by lanthanides, yttrium, and zirconium

  • Materials Chemistry
  • Ceramics and Composites

AbstractLanthanides (Ln2O3) and elements like Zr and Y find application in the highest temperature‐resistant thermal and/or environmental barrier coatings. Such coatings are routinely exposed to silicate particles (e.g., sand, dust, volcanic ash), leading to chemical reactions that degrade the coating. The dissolution of 13.5 wt.% Ln2O3 into a calcium–magnesium–aluminum‐silicate (CMAS) melt leads to a viscosity reduction for the light lanthanides, while viscosity increases toward heavier lanthanides. For Gd, Y, and Zr, various amounts up to 13.5 wt.% (Gd2O3, Y2O3, ZrO2) were added to the CMAS melt, showing a tendency of increased viscosity for low concentrations (2.5‐3 wt.%) and a decreasing viscosity for higher values of the added component.

Need a simple solution for managing your BibTeX entries? Explore CiteDrive!

  • Web-based, modern reference management
  • Collaborate and share with fellow researchers
  • Integration with Overleaf
  • Comprehensive BibTeX/BibLaTeX support
  • Save articles and websites directly from your browser
  • Search for new articles from a database of tens of millions of references
Try out CiteDrive

More from our Archive