DOI: 10.3390/nano15070509 ISSN: 2079-4991

Borophene-Based Anisotropic Metamaterial Perfect Absorber for Refractive Index Sensing

Zichen Lin, Haorui Yang, Gui Jin, Ying Zhu, Bin Tang

Borophene, as a novel two-dimensional (2D) material, has garnered significant interest due to its exceptional optoelectronic properties, including anisotropic plasmonic response high carrier mobility, etc. In this work, we theoretically propose a borophene-based anisotropic metamaterial perfect absorber using the finite-difference time-domain (FDTD) method. The research results show that the proposed metamaterial exhibits triple-band perfect electromagnetic absorption characteristics when the polarization direction of electromagnetic wave is along the zigzag direction of borophene, and the resonant absorption wavelengths can be adjusted by varying the carrier mobility of borophene. Furthermore, as an application of the proposed perfect absorber, we investigate the refractive sensing properties of the borophene-based metamaterial. When the carrier density of borophene is 4.0 × 1019 m−2, the maximum refractive index sensitivity of the designed absorber is up to 867 nm/RIU, with a figure of merit of 11.71 RIU−1, which has promising applications in the field of biochemical sensing and special environmental detection.

More from our Archive