Bionic Bovine Achilles Tendon Collagen Composite Membrane Loaded with Anti-Inflammatory Kukoamine B Promotes Skin Wound Healing
Ruting Luo, Yujie Mu, Le Zhao, Jinglin Hua, Lixin Cao, Danting Chen, Kun Li, Zhenkai Jin, Yanchuan Guo, Bing Zhang, Min WangSkin is the first line of defence between the human body and the outside world, and it is constantly exposed to external injuries and wounds for a variety of reasons. Collagen is a structural protein of the extracellular matrix and an important component of the dermis. As a wound dressing, collagen not only provides nutrients to wounds but also enhances the immune response in the pre-healing phase, making it an excellent biomaterial for healing. In this study, we used electrospinning and freeze-drying technology to prepare a Bovine Achilles Tendon Collagen (BATC) electrospun composite membrane and a BATC freeze-dried composite membrane using BATC as a substrate supplemented with 16.7% Polyethylene oxide (PEO) and 0.2% Kukoamine B (KuB). The physicochemical properties and biocompatibility of the BATC composite membrane were verified via scanning electron microscopy, Fourier-transform infrared spectroscopy, and DSC analysis and by measuring the DPPH radical-scavenging capacity, water absorption, water retention, in vitro drug release, and extract cytotoxicity. The BATC composite membrane was found to have a significant effect on skin wound healing, especially in the middle stage of healing, in a mouse full-thickness skin injury model. The BATC/PEO/KuB electrospun composite membrane (EBPK) had the best capacity for promoting wound healing and can be used as a wound dressing for in-depth research and development, and KuB, a monomer component with a clear structure and mechanism of action, can be used as a candidate component of composite dressings.