Zengxin Liu, Caiwen Ma, Wenji She, Meilin Xie

Biomedical Image Segmentation Using Denoising Diffusion Probabilistic Models: A Comprehensive Review and Analysis

  • Fluid Flow and Transfer Processes
  • Computer Science Applications
  • Process Chemistry and Technology
  • General Engineering
  • Instrumentation
  • General Materials Science

Biomedical image segmentation plays a pivotal role in medical imaging, facilitating precise identification and delineation of anatomical structures and abnormalities. This review explores the application of the Denoising Diffusion Probabilistic Model (DDPM) in the realm of biomedical image segmentation. DDPM, a probabilistic generative model, has demonstrated promise in capturing complex data distributions and reducing noise in various domains. In this context, the review provides an in-depth examination of the present status, obstacles, and future prospects in the application of biomedical image segmentation techniques. It addresses challenges associated with the uncertainty and variability in imaging data analyzing commonalities based on probabilistic methods. The paper concludes with insights into the potential impact of DDPM on advancing medical imaging techniques and fostering reliable segmentation results in clinical applications. This comprehensive review aims to provide researchers, practitioners, and healthcare professionals with a nuanced understanding of the current state, challenges, and future prospects of utilizing DDPM in the context of biomedical image segmentation.

Need a simple solution for managing your BibTeX entries? Explore CiteDrive!

  • Web-based, modern reference management
  • Collaborate and share with fellow researchers
  • Integration with Overleaf
  • Comprehensive BibTeX/BibLaTeX support
  • Save articles and websites directly from your browser
  • Search for new articles from a database of tens of millions of references
Try out CiteDrive

More from our Archive