Band Selection Algorithm Based on Multi-Feature and Affinity Propagation Clustering
Junbin Zhuang, Wenying Chen, Xunan Huang, Yunyi YanHyperspectral images are high-dimensional data containing rich spatial, spectral, and radiometric information, widely used in geological mapping, urban remote sensing, and other fields. However, due to the characteristics of hyperspectral remote sensing images—such as high redundancy, strong correlation, and large data volumes—the classification and recognition of these images present significant challenges. In this paper, we propose a band selection method (GE-AP) based on multi-feature extraction and the Affine Propagation Clustering (AP) algorithm for dimensionality reduction of hyperspectral images, aiming to improve classification accuracy and processing efficiency. In this method, texture features of the band images are extracted using the Gray-Level Co-occurrence Matrix (GLCM), and the Euclidean distance between bands is calculated. A similarity matrix is then constructed by integrating multi-feature information. The AP algorithm clusters the bands of the hyperspectral images to achieve effective band dimensionality reduction. Through simulation and comparison experiments evaluating the overall classification accuracy (OA) and Kappa coefficient, it was found that the GE-AP method achieves the highest OA and Kappa coefficient compared to three other methods, with maximum increases of 8.89% and 13.18%, respectively. This verifies that the proposed method outperforms traditional single-information methods in handling spatial and spectral redundancy between bands, demonstrating good adaptability and stability.