Stylianos Kolidakis, Kornilia Maria Kotoula, George Botzoris, Petros Fotios Kamberi, Dimitrios Skoutas

Assessing Impact Factors That Affect School Mobility Utilizing a Machine Learning Approach

  • Management, Monitoring, Policy and Law
  • Renewable Energy, Sustainability and the Environment
  • Geography, Planning and Development
  • Building and Construction

The analysis and modeling of parameters influencing parents’ decisions regarding school travel mode choice have perennially been a subject of interest. Concurrently, the evolution of artificial intelligence (AI) can effectively contribute to generating reliable predictions across various topics. This paper begins with a comprehensive literature review on classical models for predicting school travel mode choice, as well as the diverse applications of AI methods, with a particular focus on transportation. Building upon a published questionnaire survey in the city of Thessaloniki (Greece) and the conducted analysis and exploration of factors shaping the parental framework for school travel mode choice, this study takes a step further: the authors evaluate and propose a machine learning (ML) classification model, utilizing the pre-recorded parental perceptions, beliefs, and attitudes as inputs to predict the choice between motorized or non-motorized school travel. The impact of potential changes in the input values of the ML classification model is also assessed. Therefore, the enhancement of the sense of safety and security in the school route, the adoption of a more active lifestyle by parents, the widening of acceptance of public transportation, etc., are simulated and the impact on the parental choice ratio between non-motorized and motorized school commuting is quantified.

Need a simple solution for managing your BibTeX entries? Explore CiteDrive!

  • Web-based, modern reference management
  • Collaborate and share with fellow researchers
  • Integration with Overleaf
  • Comprehensive BibTeX/BibLaTeX support
  • Save articles and websites directly from your browser
  • Search for new articles from a database of tens of millions of references
Try out CiteDrive

More from our Archive