Application of Deep Learning Technology in Monitoring Plant Attribute Changes
Shuwei Han, Haihua WangWith the advancement of remote sensing imagery and multimodal sensing technologies, monitoring plant trait dynamics has emerged as a critical area of research in modern agriculture. Traditional approaches, which rely on handcrafted features and shallow models, struggle to effectively address the complexity inherent in high-dimensional and multisource data. In contrast, deep learning, with its end-to-end feature extraction and nonlinear modeling capabilities, has substantially improved monitoring accuracy and automation. This review summarizes recent developments in the application of deep learning methods—including CNNs, RNNs, LSTMs, Transformers, GANs, and VAEs—to tasks such as growth monitoring, yield prediction, pest and disease identification, and phenotypic analysis. It further examines prominent research themes, including multimodal data fusion, transfer learning, and model interpretability. Additionally, it discusses key challenges related to data scarcity, model generalization, and real-world deployment. Finally, the review outlines prospective directions for future research, aiming to inform the integration of deep learning with phenomics and intelligent IoT systems and to advance plant monitoring toward greater intelligence and high-throughput capabilities.