Anterior prefrontal EEG theta activities indicate memory and executive functions in patients with epilepsy
Nastaran Hamedi, Jesús S. García‐Salinas, Brent M. Berry, Gregory A. Worrell, Michal T. Kucewicz Abstract
Objective
Cognitive deficits are one of the most debilitating comorbidities in epilepsy and other neurodegenerative, neuropsychiatric, and neurodevelopmental brain disorders. Current diagnostic and therapeutic options are limited and lack objective measures of the underlying neural activities. In this study, electrophysiological biomarkers that reflect cognitive functions in clinically validated batteries were determined to aid diagnosis and treatment in specific brain regions.
Methods
We employed the Cambridge Neuropsychological Test Automated Battery (CANTAB) tasks to probe memory and executive functions in 86 patients with epilepsy undergoing clinical electroencephalography (EEG) monitoring. EEG electrode signals during performance of particular battery tasks were decomposed to identify specific frequency bands and cortical areas that differentiated patients with impaired, normal, and good standardized performance according to their age and gender.
Results
The anterior prefrontal cortical EEG power in the theta frequency band was consistently lower in patients with impaired memory and executive function performance (z‐score < −1). This effect was evident in all four behavioral measures of executive, visual, spatial, and working memory functions and was confined to the cortical area of all four frontal pole electrodes (Nz, Fpz, Fp1, and Fp2).
Significance
Theta EEG power in the anterior prefrontal cortex provides simple, accessible, and objective electrophysiological measure of memory and executive functions in epilepsy. Our results suggest a feasible clinical biomarker for diagnosis, monitoring, and treatment of cognitive deficits with emerging targeted neuromodulation approaches.