DOI: 10.3390/w16152185 ISSN: 2073-4441

Analysis of Surface Water Area Changes and Driving Factors in the Tumen River Basin (China and North Korea) Using Google Earth Engine (2015–2023)

Di Wu, Donghe Quan, Ri Jin

Understanding the dynamics of water bodies is crucial for managing water resources and protecting ecosystems, especially in regions prone to climatic extremes. The Tumen River Basin, a transboundary area in Northeast Asia, has seen significant water body changes influenced by natural and anthropogenic factors. Using Landsat 8 and Sentinel-1 data on Google Earth Engine, we systematically analyzed the spatiotemporal variations and drivers of water body changes in this basin from 2015 to 2023. The water body extraction process demonstrated high accuracy, with overall precision rates of 95.75% for Landsat 8 and 98.25% for Sentinel-1. Despite observed annual fluctuations, the overall water area exhibited an increasing trend, notably peaking in 2016 due to an extraordinary flood event. Emerging Hot Spot Analysis revealed upstream areas as declining cold spots and downstream regions as increasing hot spots, with artificial water bodies showing a growth trend. Utilizing Random Forest Regression, key factors such as precipitation, potential evaporation, population density, bare land, and wetlands were identified, accounting for approximately 81.9–85.3% of the observed variations in the water body area. During the anomalous flood period from June to September 2016, the Geographically Weighted Regression (GWR) model underscored the predominant influence of precipitation, potential evaporation, and population density at the sub-basin scale. These findings provide critical insights for strategic water resource management and environmental conservation in the Tumen River Basin.

More from our Archive