Francesco Arcadio, Chiara Marzano, Domenico Del Prete, Luigi Zeni, Nunzio Cennamo

Analysis of Plasmonic Sensors Performance Realized by Exploiting Different UV-Cured Optical Adhesives Combined with Plastic Optical Fibers

  • Electrical and Electronic Engineering
  • Biochemistry
  • Instrumentation
  • Atomic and Molecular Physics, and Optics
  • Analytical Chemistry

Polymer-based surface plasmon resonance (SPR) sensors can be used to realize simple, small-size, disposable, and low-cost biosensors for application in several fields, e.g., healthcare. The performance of SPR sensors based on optical waveguides can be changed by tuning several parameters, such as the dimensions and the shape of the waveguides, the refractive index of the core, and the metal nanofilms used to excite the SPR phenomenon. In this work, in order to develop, experimentally test, and compare several polymer-based plasmonic sensors, realized by using waveguides with different core refractive indices, optical adhesives and 3D printed blocks with a trench inside have been used. In particular, the sensors are realized by filling the blocks’ trenches (with two plastic optical fibers located at the end of these) with different UV-cured optical adhesives and then covering them with the same bilayer to excite the SPR phenomenon. The developed SPR sensors have been characterized by numerical and experimental results. Finally, in order to propose photonic solutions for healthcare, a comparative analysis has been reported to choose the best sensor configuration useful for developing low-cost biosensors.

Need a simple solution for managing your BibTeX entries? Explore CiteDrive!

  • Web-based, modern reference management
  • Collaborate and share with fellow researchers
  • Integration with Overleaf
  • Comprehensive BibTeX/BibLaTeX support
  • Save articles and websites directly from your browser
  • Search for new articles from a database of tens of millions of references
Try out CiteDrive

More from our Archive