DOI: 10.7717/peerj.16508 ISSN: 2167-8359

Anabolic metabolism of autotoxic substance coumarins in plants

Bei Wu, Shangli Shi, Huihui Zhang, Baofu Lu, Pan Nan, Yun A
  • General Agricultural and Biological Sciences
  • General Biochemistry, Genetics and Molecular Biology
  • General Medicine
  • General Neuroscience

Background

Autotoxicity is an intraspecific manifestation of allelopathy in plant species. The specialized metabolites and their derivatives that cause intraspecific allelopathic inhibition in the plant are known as autotoxic substances. Consequently, autotoxic substances production seriously affects the renewal and stability of ecological communities.

Methods

This article systematically summarizes the types of autotoxic substances present in different plants. They mainly include phenolic compounds, terpenoids, and nitrogenous organic compounds. Phenolic coumarins are the main autotoxic substances in many plants. Therefore, we also discuss differences in coumarin types and content among plant varieties, developmental stages, and tissue parts, as well as their mechanisms of autotoxicity. In addition, we review the metabolic pathways involved in coumarin biosynthesis, the key enzymes, genes, and transcription factors, as well as factors affecting coumarin biosynthesis.

Results

Coumarin biosynthesis involves three stages: (1) the formation of the coumarin nucleus; (2) acylation, hydroxylation, and cyclization; (3) structural modification. The key enzymes involved in the coumarin nuclear formation stage include PAL, C4H, 4CL, HCT, CAOMT, COSY, F6’H, and CCoAOMT1, and the key genes involved include BGA, CYP450 and MDR, among others. Ortho-hydroxylation is a key step in coumarin biosynthesis and PS, COSY and S8H are the key enzymes involved in this process. Finally, UGTs are responsible for the glycosylation modification of coumarins, and the MaUGT gene may therefore be involved in coumarin biosynthesis.

Conclusion

It is important to elucidate the autotoxicity and anabolic mechanisms of coumarins to create new germplasms that produce fewer autotoxic substances.

More from our Archive