Linda Salzmann, Tino Spescha, Neeraj Singh, Anja Kobel, Vanessa Fischer, Tobias Schierscher, Friederike Bauland, Andrea Geistanger, Lorenz Risch, Christian Geletneky, Christoph Seger, Judith Taibon

An isotope dilution-liquid chromatography-tandem mass spectrometry (ID-LC-MS/MS)-based candidate reference measurement procedure for the quantification of topiramate in human serum and plasma

  • Biochemistry (medical)
  • Clinical Biochemistry
  • General Medicine

Abstract Objectives Topiramate is an antiepileptic drug (AED) used for the monotherapy or adjunctive treatment of epilepsy and for the prophylaxis of migraine. It has several pharmacodynamic properties that contribute to both its clinically useful properties and observed adverse effects. Accurate measurement of its concentration is therefore essential for dose adjustment/optimisation of AED therapy. Our aim was to develop and validate a novel reference measurement procedure (RMP) for the quantification of topiramate in human serum and plasma. Methods An isotope dilution-liquid chromatography-tandem mass spectrometry (ID-LC-MS/MS) method in combination with a protein-precipitation-based sample preparation allows for quantification of topiramate in human serum and plasma. To assure traceability to SI units, quantitative nuclear magnetic resonance (qNMR) was applied to characterize the reference material used as primary calibrator for this RMP. Matrix effects were determined by performing a post-column infusion experiment and comparing standard line slopes. Accuracy and precision was evaluated performing an extensive five day precision experiment and measurement uncertainty was evaluated according Guide to the Expression of Uncertainty in Measurement (GUM). Results The method enabled topiramate quantification within the range of 1.20–36.0 μg/mL without interference from structurally related compounds and no evidence of a matrix effect. Intermediate precision was ≤3.2 % and repeatability was 1.4–2.5 % across all concentration levels. The relative mean bias was −0.3 to 3.5 %. Expanded measurement uncertainties for target value assignment (n=6) were found to be ≤2.9 % (k=2) independent of the concentration level and the nature of the sample. Conclusions In human serum and plasma, the RMP demonstrated high analytical performance for topiramate quantification and fulfilled the requirements on measurement uncertainty. Traceability to SI units was established by qNMR content determination of the topiramate, which was used for direct calibration of the RMP. This RMP is, therefore, fit for purpose for routine assay standardization and clinical sample evaluation.

Need a simple solution for managing your BibTeX entries? Explore CiteDrive!

  • Web-based, modern reference management
  • Collaborate and share with fellow researchers
  • Integration with Overleaf
  • Comprehensive BibTeX/BibLaTeX support
  • Save articles and websites directly from your browser
  • Search for new articles from a database of tens of millions of references
Try out CiteDrive

More from our Archive