DOI: 10.1155/2023/5541699 ISSN: 1687-9732

An Intelligent Framework Based on Deep Learning for Online Quran Learning during Pandemic

Natasha Nigar, Amna Wajid, Sunday Adeola Ajagbe, Matthew O. Adigun
  • Artificial Intelligence
  • Computer Networks and Communications
  • Computer Science Applications
  • Civil and Structural Engineering
  • Computational Mechanics

The COVID-19 pandemic influenced the whole world and changed social life globally. Social distancing is an effective strategy adopted by all countries to prevent humans from being infected. Al-Quran is the holy book of Muslims and its listening and reading is one of the obligatory activities. Close contact is essential in traditional learning system; however, most of the Al-Quran learning schools were locked down to minimize the spread of COVID-19 infection. To address this limitation, in this paper, we propose a novel system using deep learning to identify the correct recitation of individual alphabets, words from a recited verse and a complete verse of Al-Quran to assist the reciter. Moreover, in the proposed approach, if the user recites correctly, his/her voice is also added to the existing dataset to leverage proposed approach effectiveness. We employ mel-frequency cepstral coefficients (MFCC) to extract voice features and long short-term memory (LSTM), a recurrent neural network (RNN) for classification. The said approach is validated using the Al-Quran dataset. The results demonstrate that the proposed system outperforms the state-of-the-art approaches with an accuracy rate of 97.7%. This system will help the Muslim community all over the world to recite the Al-Quran in the right way in the absence of human help due to similar future pandemics.

More from our Archive