Dustin Steven Weaver, Sanja Mišković

An Analysis of CFD-DEM with Coarse Graining for Turbulent Particle-Laden Jet Flows

  • Fluid Flow and Transfer Processes
  • Mechanical Engineering
  • Condensed Matter Physics

This paper presents the results of simulations of particle-laden air–solid jet flow in long straight tubes using CFD-DEM, along with an analysis of coarse-graining. Although previous studies have used CFD-DEM for similar flows, these have typically been in a dilute flow regime where uncoupled simulations can be used effectively. However, fully coupled simulations can introduce issues, necessitating validation studies to ensure that all coupling parameters are effectively used and that the physics is accurately represented. This paper validated the simulations against two different experimental studies, with fluid Reynolds numbers between 10,000 and 40,000 and Stokes numbers between 5.6 and 50. Interestingly, the profiles of the mean particle velocity exhibited fewer discrepancies as the Stokes number increased, but more discrepancies for the root-mean-squared velocity compared to the experiments. The particle number flux was consistent with the experiments after the nozzle exit. Coarse-graining was also applied to the same simulations, achieving relatively accurate results. However, as expected, the scaling of contact collision frequencies, forces, and stresses could not be achieved, meaning that coarse-graining may be useful for comparing designs or operating parameters on an industrial scale, but falls short when measuring the total energy dissipation of one experiment.

Need a simple solution for managing your BibTeX entries? Explore CiteDrive!

  • Web-based, modern reference management
  • Collaborate and share with fellow researchers
  • Integration with Overleaf
  • Comprehensive BibTeX/BibLaTeX support
  • Save articles and websites directly from your browser
  • Search for new articles from a database of tens of millions of references
Try out CiteDrive

More from our Archive