DOI: 10.3390/pr11123318 ISSN: 2227-9717

An Alternative Way to Produce High-Density Graphite from Carbonaceous Raw Materials

Radu Mirea
  • Process Chemistry and Technology
  • Chemical Engineering (miscellaneous)
  • Bioengineering

In this study, graphite, the most stable form of carbon, was examined for its hexagonal crystalline structure with specific dimensions (ao = 2.46 Ǻ; co = 6.70 Ǻ). Its framework comprises parallel carbon atom planes, forming regular hexagons (side length 1.415 Ǻ) and 120° angles between adjacent atoms. Two structural variations exist: hexagonal symmetry (1-2-1-2-1-2 planes) and rhomboidal symmetry (1-2-3-1-2-3 planes). The aim of this research was to produce high-density graphite utilizing carbonaceous raw materials. Graphite-based materials often exhibit high porosity, necessitating additional treatment. In this study, we successfully obtained mesophase tar pitch (yield: 45%), a pivotal raw material, and high-density graphite. The resulting graphite underwent characterization for physical properties (apparent and real density, porosity, and compression strength), demonstrating conformity with the existing literature data.

More from our Archive