Annett Gawlik, Uwe Brückner, Gabriele Schmidl, Volker Wagner, Wolfgang Paa, Jonathan Plentz

Amorphous Silicon Thin-Film Solar Cells on Fabrics as Large-Scale Detectors for Textile Personal Protective Equipment in Active Laser Safety

  • General Materials Science

Laser safety is starting to play an increasingly important role, especially when the laser is used as a tool. Passive laser safety systems quickly reach their limits and, in some cases, provide inadequate protection. To counteract this, various active systems have been developed. Flexible and especially textile-protective materials pose a special challenge. The market still lacks personal protective equipment (PPE) for active laser safety. Covering these materials with solar cells as large-area optical detectors offers a promising possibility. In this work, an active laser protection fabric with amorphous silicon solar cells is presented as a large-scale sensor for continuous wave and pulsed lasers (down to ns). First, the fabric and the solar cells were examined separately for irradiation behavior and damage. Laser irradiation was performed at wavelengths of 245, 355, 532, and 808 nm. The solar cell sensors were then applied directly to the laser protection fabric. The damage and destruction behavior of the active laser protection system was investigated. The results show that the basic safety function of the solar cell is still preserved when the locally damaged or destroyed area is irradiated again. A simple automatic shutdown system was used to demonstrate active laser protection within 50 ms.

Need a simple solution for managing your BibTeX entries? Explore CiteDrive!

  • Web-based, modern reference management
  • Collaborate and share with fellow researchers
  • Integration with Overleaf
  • Comprehensive BibTeX/BibLaTeX support
  • Save articles and websites directly from your browser
  • Search for new articles from a database of tens of millions of references
Try out CiteDrive

More from our Archive