Ambipolar doping of a charge-transfer insulator in the Emery model
G. Sordi, G. L. Reaney, N. Kowalski, P. Sémon, A.-M. S. TremblayUnderstanding the similarities and differences between adding or removing electrons from a charge-transfer insulator may provide insights about the origin of the electron-hole asymmetry found in cuprates. Here we study with cellular dynamical mean-field theory the Emery model set in the charge-transfer insulator regime, and dope it with either electrons or holes. We consider the normal state only and focus on the doping evolution of the orbital character of the dopants and on the nature of the doping-driven transition. Regarding the orbital character of the dopants, we found an electron-hole asymmetry: doped electrons mostly enter the copper orbitals, whereas doped holes mostly enter the oxygen orbitals. Regarding the nature of the doping-driven transition, we found no qualitative electron-hole asymmetry: On either electron or hole doping, there is a two-stage transition from a charge-transfer insulator to a strongly correlated pseudogap and then to a metal. This shows that a strongly correlated pseudogap is an emergent feature of doped correlated insulators in two dimensions, in qualitative agreement with recent experiments on ambipolar