DOI: 10.1002/adfm.202312480 ISSN: 1616-301X

All 3D‐Printed Soft High‐Density Surface Electromyography Electrode Arrays for Accurate Muscle Activation Mapping and Decomposition

Yi Zhao, Chen Chen, Baoyang Lu, Xiangyang Zhu, Guoying Gu
  • Electrochemistry
  • Condensed Matter Physics
  • Biomaterials
  • Electronic, Optical and Magnetic Materials


High‐density surface electromyography (sEMG) electrode arrays enable the recording of tens to hundreds of channels of electromyographic signals, which have found wide applications in clinics and human‐machine interfaces. However, current manufacturing technologies of high‐density sEMG electrode arrays generally involve high‐cost equipments, complicated procedures, and insufficient programmability, severely hampering the rational design and practical applications of customized yet cost‐effective high‐density electrode arrays. Herein, the facile and efficient fabrication of novel 32‐channel soft high‐density sEMG electrode arrays by an all‐printed technique based on multimaterial direct ink writing 3D printing is presented. By employing rational four‐layer stacked structure designs with systematic ink printability evaluation, it can successfully realize seamless interfacial integration during the multimaterial printing, achieving reproducible, programmable, continuous fabrication of soft high‐density sEMG electrode arrays. The all 3D‐printed soft electrode arrays exhibit excellent stability, low impedance, and high signal‐to‐noise ratio superior to commercial products with an increase of 32.2%. Such intriguing properties enable this all 3D‐printed electrode arrays the unique capability of mapping muscle activation of the forearm, and the motor unit action potential trains can be precisely identified for varying hand gestures to effectively explore the innovative human‐machine interface toward diverse applications such as teleoperation and prosthetic control.

More from our Archive