DOI: 10.3390/s24165323 ISSN: 1424-8220

Algorithm Validation for Quantifying ActiGraph™ Physical Activity Metrics in Individuals with Chronic Low Back Pain and Healthy Controls

Jordan F. Hoydick, Marit E. Johnson, Harold A. Cook, Zakiy F. Alfikri, John M. Jakicic, Sara R. Piva, April J. Chambers, Kevin M. Bell

Assessing physical activity is important in the treatment of chronic conditions, including chronic low back pain (cLBP). ActiGraph™, a widely used physical activity monitor, collects raw acceleration data, and processes these data through proprietary algorithms to produce physical activity measures. The purpose of this study was to replicate ActiGraph™ algorithms in MATLAB and test the validity of this method with both healthy controls and participants with cLBP. MATLAB code was developed to replicate ActiGraph™’s activity counts and step counts algorithms, to sum the activity counts into counts per minute (CPM), and categorize each minute into activity intensity cut points. A free-living validation was performed where 24 individuals, 12 cLBP and 12 healthy, wore an ActiGraph™ GT9X on their non-dominant hip for up to seven days. The raw acceleration data were processed in both ActiLife™ (v6), ActiGraph™’s data analysis software platform, and through MATLAB (2022a). Percent errors between methods for all 24 participants, as well as separated by cLBP and healthy, were all less than 2%. ActiGraph™ algorithms were replicated and validated for both populations, based on minimal error differences between ActiLife™ and MATLAB, allowing researchers to analyze data from any accelerometer in a manner comparable to ActiLife™.

More from our Archive