DOI: 10.3390/ai5010003 ISSN: 2673-2688

AI Advancements: Comparison of Innovative Techniques

Hamed Taherdoost, Mitra Madanchian
  • Industrial and Manufacturing Engineering

In recent years, artificial intelligence (AI) has seen remarkable advancements, stretching the limits of what is possible and opening up new frontiers. This comparative review investigates the evolving landscape of AI advancements, providing a thorough exploration of innovative techniques that have shaped the field. Beginning with the fundamentals of AI, including traditional machine learning and the transition to data-driven approaches, the narrative progresses through core AI techniques such as reinforcement learning, generative adversarial networks, transfer learning, and neuroevolution. The significance of explainable AI (XAI) is emphasized in this review, which also explores the intersection of quantum computing and AI. The review delves into the potential transformative effects of quantum technologies on AI advancements and highlights the challenges associated with their integration. Ethical considerations in AI, including discussions on bias, fairness, transparency, and regulatory frameworks, are also addressed. This review aims to contribute to a deeper understanding of the rapidly evolving field of AI. Reinforcement learning, generative adversarial networks, and transfer learning lead AI research, with a growing emphasis on transparency. Neuroevolution and quantum AI, though less studied, show potential for future developments.

More from our Archive