DOI: 10.3390/drones8080375 ISSN: 2504-446X

Aerial Map-Based Navigation by Ground Object Pattern Matching

Youngjoo Kim, Seungho Back, Dongchan Song, Byung-Yoon Lee

This paper proposes a novel approach to map-based navigation for unmanned aircraft. The proposed approach employs pattern matching of ground objects, not feature-to-feature or image-to-image matching, between an aerial image and a map database. Deep learning-based object detection converts the ground objects into labeled points, and the objects’ configuration is used to find the corresponding location in the map database. Using the deep learning technique as a tool for extracting high-level features reduces the image-based localization problem to a pattern-matching problem. The pattern-matching algorithm proposed in this paper does not require altitude information or a camera model to estimate the horizontal geographical coordinates of the vehicle. Moreover, it requires significantly less storage because the map database is represented as a set of tuples, each consisting of a label, latitude, and longitude. Probabilistic data fusion with the inertial measurements by the Kalman filter is incorporated to deliver a comprehensive navigational solution. Flight experiments demonstrate the effectiveness of the proposed system in real-world environments. The map-based navigation system successfully provides the position estimates with RMSEs within 3.5 m at heights over 90 m without the aid of the GNSS.

More from our Archive