Advancing Sustainable Geothermal Energy: A Case Study of Controlled Source Audio-Frequency Magnetotellurics Applications in Qihe, Shandong
Hui Zhang, Fajian NieGeothermal energy is a key part of sustainable and renewable energy strategies, especially for clean heating in northern regions. This study focuses on Qihe County in Shandong Province, applying a controlled source audio-frequency magnetotellurics (CSAMT) method to investigate deep karst geothermal reservoirs. This research addresses the complex geological conditions and electromagnetic interference in the region, aiming to improve sustainable geothermal resource development. The findings indicate that the geothermal reservoir in the study area primarily consists of Ordovician limestone, characterized by moderate burial depth, high water volume, and elevated water temperature. Integrating CSAMT with vertical electrical sounding (VES) and radiometric surveying has clearly defined the deep aquifer layers and major water-controlling fault structures. Drilling verification results demonstrate the significant effectiveness of the integrated geophysical methods employed, providing reliable technical support for deep geothermal exploration in similar regions. This study makes a significant contribution to the scientific and technical foundation necessary for the sustainable development and utilization of geothermal resources, supporting the broader goals of environmental sustainability and renewable energy.