Advances and Factors Influencing In Situ Combustion Effectiveness: A Review
Zhenye Liu, Bo Wang, Shuangchun Yang, Chao TianIn situ combustion, as a technology for improving oil recovery efficiency, faces technical and economic challenges. Fire-driven oil recovery technology is renowned for its significant technical advantages, including wide reservoir applicability, efficient crude oil recovery rate, and lower extraction costs. It is particularly suitable for the recovery of high viscosity petroleum resources such as heavy oil and oil sands. However, due to the complexity of the fire-driven mechanism, there are still many problems in the engineering design of fire-driven reservoirs. In particular, the lack of intuitive and accurate understanding of the combustion and fire-driven process in the reservoir makes it difficult to take effective means to accurately judge the underground combustion conditions, monitoring and control of the fire-driven leading edge. This paper reviews the effects of permeability, oil saturation, gas injection rate, injection and extraction well spacing, and reservoir thickness. These findings can help to improve the stability and efficiency of fire-driven technology so as to realise better mining results in practical applications.