Sabrine Belmekki, Dominique Gruyer

Advanced Road Safety: Collective Perception for Probability of Collision Estimation of Connected Vehicles

  • Computer Networks and Communications
  • Human-Computer Interaction

In the dynamic landscape of vehicular communication systems, connected vehicles (CVs) present unprecedented capabilities in perception, cooperation, and, notably, probability of collision management. This paper’s main concern is the collision probability of collision estimation. Achieving effective collision estimation heavily relies on the sensor perception of obstacles and a critical collision probability prediction system. This paper is dedicated to refining the estimation of collision probability through the intentional integration of CV communications, with a specific focus on the collective perception of connected vehicles. The primary objective is to enhance the understanding of the potential probability of collisions in the surrounding environment by harnessing the collective insights gathered through inter-vehicular communication and collaboration. This improvement enables a superior anticipation capacity for both the driving system and the human driver, thereby enhancing road safety. Furthermore, the incorporation of extended perception strategies holds the potential for more accurate collision probability estimation, providing the driving system or human driver with increased time to react and make informed decisions, further fortifying road safety measures. The results underscore a significant enhancement in collision probability awareness, as connected vehicles collectively contribute to a more comprehensive collision probability landscape. Consequently, this heightened collective collision probability perception improves the anticipation capacity of both the driving system and the human driver, contributing to an elevated level of road safety. For future work, the exploration of our extended perception techniques to achieve real-time probability of collision estimation is proposed. Such endeavors aim to drive the development of robust and anticipatory autonomous driving systems that truly harness the benefits of connected vehicle technologies.

Need a simple solution for managing your BibTeX entries? Explore CiteDrive!

  • Web-based, modern reference management
  • Collaborate and share with fellow researchers
  • Integration with Overleaf
  • Comprehensive BibTeX/BibLaTeX support
  • Save articles and websites directly from your browser
  • Search for new articles from a database of tens of millions of references
Try out CiteDrive

More from our Archive