Advanced Brain Tumor Classification in MR Images Using Transfer Learning and Pre-Trained Deep CNN Models
Rukiye Disci, Fatih Gurcan, Ahmet SoyluBackground/Objectives: Brain tumor classification is a crucial task in medical diagnostics, as early and accurate detection can significantly improve patient outcomes. This study investigates the effectiveness of pre-trained deep learning models in classifying brain MRI images into four categories: Glioma, Meningioma, Pituitary, and No Tumor, aiming to enhance the diagnostic process through automation. Methods: A publicly available Brain Tumor MRI dataset containing 7023 images was used in this research. The study employs state-of-the-art pre-trained models, including Xception, MobileNetV2, InceptionV3, ResNet50, VGG16, and DenseNet121, which are fine-tuned using transfer learning, in combination with advanced preprocessing and data augmentation techniques. Transfer learning was applied to fine-tune the models and optimize classification accuracy while minimizing computational requirements, ensuring efficiency in real-world applications. Results: Among the tested models, Xception emerged as the top performer, achieving a weighted accuracy of 98.73% and a weighted F1 score of 95.29%, demonstrating exceptional generalization capabilities. These models proved particularly effective in addressing class imbalances and delivering consistent performance across various evaluation metrics, thus demonstrating their suitability for clinical adoption. However, challenges persist in improving recall for the Glioma and Meningioma categories, and the black-box nature of deep learning models requires further attention to enhance interpretability and trust in medical settings. Conclusions: The findings underscore the transformative potential of deep learning in medical imaging, offering a pathway toward more reliable, scalable, and efficient diagnostic tools. Future research will focus on expanding dataset diversity, improving model explainability, and validating model performance in real-world clinical settings to support the widespread adoption of AI-driven systems in healthcare and ensure their integration into clinical workflows.