DOI: 10.3390/c11010004 ISSN: 2311-5629

Adsorption of Asymmetric and Linear Hazardous Gases on Graphene Oxides: Density Functional Study

Yongju Kwon, Taeyang Kim, Jaemyeong Choi, Sangeon Lee, Sungmin Cha, Soonchul Kwon

The introduction of functional groups, such as graphene oxide, can improve the reactivity between molecules, increasing the potential for their use in many fields such as gas sensing and adsorption. It was reported that that graphene materials are actively utilized in toxic gas sensor materials by modifying the surface with their chemical and structural stability. In order to understand the mechanisms of graphene and graphene oxides for adsorbing the hazardous gases, we classified the four gases (H2S, NH3, HF and COS) with their phases (two asymmetric and two linear), and conducted density functional theory calculations to determine the adsorption affinity, which represents the binding energy, bond distance, energy charge (Mulliken and Hirshfeld methods) and band gap between the HOMO (Highest Occupied Molecular Orbital) and the LUMO (Lowest Unoccupied Molecular Orbital). The results showed that introducing a functional group enhanced the binding energy with a narrowed band gap in asymmetric gas adsorption (H2S and NH3), while the results of the linear gases (HF and COS) showed lowered binding energy with a narrowed band gap. It is judged that the oxygen functional groups can narrow the band gap by introducing localized states between the valence and conduction bands or by forming new hybrid states through interactions with all the gases. However, from the differences in the phases, the linear gases stably interacted with a defect-free, porous and flat structure like with π–π interactions. In short, the theoretical findings confirm that the oxidation functional groups narrowed the band gap with a local interaction; however, linear gases showed enhanced binding energies with pristine graphene, which highlights the importance of surface material selection dependent on the target gases.

More from our Archive