DOI: 10.3390/polym16152164 ISSN: 2073-4360

Addition of Coffee Waste-Derived Plasticizer Improves Processability and Barrier Properties of Poly(3-hydroxybutyrate-co-3-hydroxyvalerate)-Natural Rubber Bioplastic

Rinky Ghosh, Xiaoying Zhao, Yael Vodovotz

This study aimed to develop a value-added bio-based polymer product for food packaging. Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) is a promising bioplastic with limitations in processability and brittleness, which our group previously addressed by incorporating high-molecular-weight natural rubber (NR) compatibilized with peroxide and coagent. Yet, processability in an industrial setting proved difficult. Coffee oil epoxide (COE), a waste-derived plasticizer, was incorporated into the PHBV/NR/peroxide/coagent matrix via extrusion, and properties of resulting sheets were evaluated. COE incorporation significantly decreased the oxygen and water permeability of the PHBV/NR sheets. Maximum degradation temperature Tpeak (°C) increased by ~4.6 °C, and degree of crystallinity decreased by ~15.5% relative to pristine PHBV, indicating good thermal stability. Melting (Tm) and glass transition temperatures (Tg) of the PHBV/NR blend remained unchanged with COE incorporation. X-ray diffraction (XRD) revealed ~10.36% decrease in crystal size for the plasticized blend. Energy-dispersive X-ray analysis (EDAX) and scanning electron microscopy (SEM) confirmed good dispersion with no phase separation. The water uptake capacity of the plasticized blend was reduced by 61.02%, while surface contact angle measurements showed improved water resistance. The plasticized PHBV sheet shows promise for environmentally friendly packaging films due to its high thermal stability, effective barrier properties, and industrial scalability.

More from our Archive