Adaptive Knowledge Assessment via Symmetric Hierarchical Bayesian Neural Networks with Graph Symmetry-Aware Concept Dependencies
Wenyang Cao, Nhu Tam Mai, Wenhe LiuTraditional educational assessment systems suffer from inefficient question selection strategies that fail to optimally probe student knowledge while requiring extensive testing time. We present a novel hierarchical probabilistic neural framework that integrates Bayesian inference with symmetric deep neural architectures to enable adaptive, efficient knowledge assessment. Our method models student knowledge as latent representations within a graph-structured concept dependency network, where probabilistic mastery states, updated through variational inference, are encoded by symmetric graph properties and symmetric concept representations that preserve structural equivalences across similar knowledge configurations. The system employs a symmetric dual-network architecture: a concept embedding network that learns scale-invariant hierarchical knowledge representations from assessment data and a question selection network that optimizes symmetric information gain through deep reinforcement learning with symmetric reward structures. We introduce a novel uncertainty-aware objective function that leverages symmetric uncertainty measures to balance exploration of uncertain knowledge regions with exploitation of informative question patterns. The hierarchical structure captures both fine-grained concept mastery and broader domain understanding through multi-scale graph convolutions that preserve local graph symmetries and global structural invariances. Our symmetric information-theoretic method ensures balanced assessment strategies that maintain diagnostic equivalence across isomorphic concept subgraphs. Experimental validation on large-scale educational datasets demonstrates that our method achieves 76.3% diagnostic accuracy while reducing the question count by 35.1% compared to traditional assessments. The learned concept embeddings reveal interpretable knowledge structures with symmetric dependency patterns that align with pedagogical theory. Our work generalizes across domains and student populations through symmetric transfer learning mechanisms, providing a principled framework for intelligent tutoring systems and adaptive testing platforms. The integration of probabilistic reasoning with symmetric neural pattern recognition offers a robust solution to the fundamental trade-off between assessment efficiency and diagnostic precision in educational technology.